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To develop a more complete understanding of the ecological factors that regulate crop productivity, we tested the relative
predictive power of yield models driven by five predictor variables: wheat and wild oat density, nitrogen and herbicide rate,
and growing-season precipitation. Existing data sets were collected and used in a meta-analysis of the ability of at least two
predictor variables to explain variations in wheat yield. Yield responses were asymptotic with increasing crop and weed
density; however, asymptotic trends were lacking as herbicide and fertilizer levels were increased. Based on the independent
field data, the three best-fitting models (in order) from the candidate set of models were a multiple regression equation that
included all five predictor variables (R2 5 0.71), a double-hyperbolic equation including three input predictor variables
(R 2 5 0.63), and a nonlinear model including all five predictor variables (R2 5 0.56). The double-hyperbolic, three-
predictor model, which did not include herbicide and fertilizer influence on yield, performed slightly better than the five-
variable nonlinear model including these predictors, illustrating the large amount of variation in wheat yield and the lack of
concrete knowledge upon which farmers base their fertilizer and herbicide management decisions, especially when weed
infestation causes competition for limited nitrogen and water. It was difficult to elucidate the ecological first principles in
the noisy field data and to build effective models based on disjointed data sets, where none of the studies measured all five
variables. To address this disparity, we conducted a five-variable full-factorial greenhouse experiment. Based on our five-
variable greenhouse experiment, the best-fitting model was a new nonlinear equation including all five predictor variables
and was shown to fit the greenhouse data better than four previously developed agronomic models with an R 2 of 0.66.
Development of this mathematical model, through model selection and parameterization with field and greenhouse data,
represents the initial step in building a decision support system for site-specific and variable-rate management of herbicide,
fertilizer, and crop seeding rate that considers varying levels of available water and weed infestation.
Nomenclature: Imazamethabenz; wild oat, Avena fatua L. AVEFA; wheat, Triticum aestivum L.
Key words: Yield prediction, empirical modeling, site-specific management, fertilizer, herbicide, precipitation, precision
agriculture.

Management decisions made by many farmers are still
based mainly on tradition, personal observations, and
interaction with crop consultants, industry salespersons, and
university extension personnel (Anderson 2003). Precision
agriculture technologies may provide a means to integrate
farmer knowledge with site-specific tools. Site-specific
management may, in turn, increase efficiency of resource
use and optimize net returns. On-farm and on-research
station experiments have suggested improved economic gain
with spatially targeted, variable application rates of fertilizer
(Barton 1992; Li and Yost 2000) and herbicide (Grundy et al.
1996; Johnson et al. 1995; Walker et al. 2002). In addition,
environmental pollution and selection for herbicide resistance
can be reduced (Christensen et al. 1998; Jasieniuk et al. 1999)
if variable-rate applications of fertilizer and herbicide are made
only when previous site histories (e.g., if a specific location in
the field is known to be nitrogen rich or poor) and threshold
weed densities warrant their use.

Mechanical tools and information sensors for site-specific
management (e.g., yield monitors, variable rate sensors, etc.)
are under development, but there is a critical need to further
understand the underlying ecological processes involved in
optimizing grain yield. A wheat-yield model, based on the
mechanisms of plant competition for limited resources in

a variable environment, has not previously been developed.
With deeper knowledge of the factors influencing yield, more
accurate herbicide and fertilizer prescriptions could be made.

Our research attempted to elucidate ecological first
principles, including each variable’s influence on yield and
the interactions between independent variables, such that
precision agriculture technologies can be employed to
optimize site-specific management of farm inputs. The first
principles of a science are generalizations based on many
empirical observations, that is, that a particular, consistent
outcome (first principle) has a logical explanation. Thus, first
principles become the basic tenants that form the foundation
of a science discipline. We have focused on five highly
influential and easily measured predictors of wheat yield:
wheat density, wild oat density, nitrogen rate, herbicide rate,
and available water. An effective yield-prediction model
would serve as the core of a decision support system, through
which, site-specific management strategies of nitrogen,
fertilizer, and crop seeding rate could be recommended.

Historically, studies addressing the generality and predictive
power of relationships have not been thoroughly explored in
agronomy or agroecology (Beck 1997). Some yield-prediction
modeling in agronomy has made significant progress in
quantifying crop–weed interactions. Early yield models,
resembling simple linear-regression equations that included
weed density, were developed by Bleasdale and Nelder (1960),
Holliday (1960), and Farazdaghi and Harris (1968), among
many others (see reviews by Willey and Heath [1969],
Cousens [1985a, 1985b], and Firbank and Watkinson
[1990]). In recent decades, more commonly used models
include the yield–weed density and the yield–loss models
described by Cousens (1985a, 1985b). An alternative strategy
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for yield models pioneered by Shinozaki and Kira (1956)
included crop density as well as weed density. Later, Firbank
and Watkinson (1985) developed a two-species competition
model, and Maxwell and Jasieniuk (Jasieniuk et al. 2000)
developed a double-hyperbolic, yield-prediction equation also
expressing two-species competition.

Several studies have included the population dynamics of
weed impacts on crops to capture the multiple-year effects of
the weeds (Cousens et al. 1986; Gonzalez-Andujar and Perry
1995; Mortimer 1987; Wilson et al. 1984). Other researchers
have considered how well historical weather data by
themselves can predict wheat yield (Brooks et al. 2001;
Chipanshi et al. 1997; Hammer et al. 2001; Haun 1974;
Williams 1973). Until recently, no empirical, mechanistic, or
population-dynamics model has included the combined
effects and interactions of uncontrolled environmental
resources and controlled agricultural inputs on yield.

Brain et al. (1999) and Kim et al. (2002) reported models
that include herbicide application with weed density as
predictor variables of crop yield. Another important advance-
ment in yield modeling was developed by Kim et al. (2006),
who modeled the effects of sublethal doses of herbicide and
fertilizer on crop–weed competition. Although yield model
development has progressed in weed science, the environ-
mental variable of water, arguably the most influential variable
on yield, has not been included in crop–weed competition
models that also include fertilizer and herbicide. The only
yield models that have included agricultural inputs, such as
fertilizer, and environmental variables, such as weather, are
crop-growth models such as the Crop Estimation through
Resource and Environment Synthesis (CERES), developed by
Ritchie and Otter (1985) and Godwin et al. (1990). Later
Beckie et al. (1994), Chipanshi et al. (1997), and Moore and
Tyndale-Biscoe (1999) used CERES to investigate wheat
growth over a range of weather conditions, fertilizer rates, and
soil types. Beckie et al. (1994) also tested the effectiveness of
three other simulation models (e.g., the Erosion Productivity
Impact Calculator [EPIC], the Nitrate Leaching and
Economic Analysis Package [NLEAP], and Nitrogen–Till-
age–Residue-Management [NTRM]) for estimating nitrates
and water in two soils. Although mechanistic models, such as
CERES, EPIC, NLEAP, NTRM, and the crop–weed
INTERspecific COMpetition model, INTERCOM (Kropff
and van Laar 1993) among others, are extremely valuable to
the investigation of physiological and phenological processes,
they are generally not as suitable as empirical models for
management in agriculture because they require estimating
more parameters without yet showing better predictions than
empirical models (Barnett et al. 1997).

As with modeling exercises, experimental studies have
typically included only a small number of predictors. Many
field studies in agronomy have investigated how available
nitrogen (Henry et al. 1986; Racz 1974), available water
(Bauder et al. 1987; Brown and Carlson 1990; DeJong and
Rennie 1967; Lehane and Staple 1965), or herbicide (Salonen
1992; Spandl et al. 1997) individually influence wheat yield.
Many other studies have explored the influence of two or
more of these predictor variables together on yield, specifi-
cally, wheat density and wild oat density (Carlson et al. 1982;
Chancellor and Peters 1974; Thurston 1962; Wilson et al.
1990); nitrogen rate and wild oat density (Bell and Nalewaja
1968; Bowden and Friesen 1968; Carlson and Hill 1985;
Sexsmith and Russell 1963); nitrogen rate, wheat density, and

wild oat density (Blackshaw et al. 2002, 2004; Carlson and
Hill 1985; Farahbakhsh et al. 1987; Henson and Jordan
1982; Tollenaar 1992); nitrogen rate and available water
(Campbell et al. 1993; Engel et al. 2001; Fernandez and Laird
1959; Henry 1971; Hunter 1958; Neidig and Snyder 1924;
Racz 1974; Warder et al. 1963); soil moisture, wheat density,
and wild oat density (Van Wychen 2002); and herbicide rate,
wheat density, and wild oat density (Blackshaw et al. 2002;
Van Wychen 2002). Other field studies have investigated the
influence of topography, soil type, soil pH, gravimetric
moisture content, and soil fertility (Dieleman 2000a, 2000b;
Dille et al. 2002; Mortensen et al. 1993; Shatar and
McBratney 1999) to predict weed occurrence and its influence
on yield. However, no field studies exist that have explored
the combined influence of nitrogen, herbicide, and available
water specifically on spring wheat–wild oat interference.

In contrast to the previously described modeling and
experimental studies, our objectives were (1) to use field and
greenhouse data to determine the functional dependence
between yield and the five predictors and (2) to use the
structures determined in our first objective in conjunction
with meta-analysis to parameterize the best-fitting model to
the data for optimized decision making about agricultural
inputs. Specifically, the long-term goal of this research was to
select a model that was simultaneously highly predictive and
biologically meaningful for incorporation into a decision
support system that farmers and crop consultants can use to
develop site-specific and variable management strategies for
crop seeding, nitrogen, and herbicide rate.

To meet this goal, our strategy was to (1) gather as many
data sets as possible where spring wheat yield was the
dependent variable and where some of the five designated
independent variables were included; (2) explore individual
data sets using scatter plots and regression analysis such that
important biological mechanisms were revealed, i.e., that all
predictor interactions were exposed as well as each variable’s
influence on yield; (3) develop and parameterize a best-fitting
empirical yield-prediction model from a candidate set of
models based on the five selected variables using a combined
data set created from the independent data sets; (4) conduct
a five-variable greenhouse experiment to augment infor-
mation from previous studies; (5) explore greenhouse data and
update the prediction models to include as many of the
predictor variables and their interactions as possible while
adhering to the principle of parsimony (Burnham and
Anderson 1998).

We have chosen these five specific predictors (i.e., wheat
and wild oat density, nitrogen and herbicide rate, and
growing-season precipitation/water) with the understanding
that many other predictor variables could be considered and
perhaps should be considered in future studies. We selected
this collection of five predictor variables primarily for three
reasons. First, an extensive literature search indicated these
variables to be the five most influential on dryland wheat yield
production. Second, adding more predictors would threaten
model convergence. Third, these five variables are relatively
easy for farmers to measure in comparison to predictors such
as site-specific soil pH and moisture content, and three of the
variables—wheat density (crop seeding rate), herbicide rate,
and nitrogen rate—are variables that farmers can control.
End-use applicability was of paramount importance when
constructing our model sets.
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Materials and Methods

Field Studies. Unfortunately, the ideal data set that includes all
five predictor variables replicated at several levels and sites does
not exist. Nevertheless, empirical models can be developed
from the numerous on-farm and experiment-station trials that
have been conducted for different purposes (Cousens et al.
1987). Thus, we have obtained and used data sets where subsets
of the five specified variables were manipulated and measured.
Studies that included several of the factors (e.g., spring wheat
density, wild oat density, nitrogen rate, herbicide rate, and
growing-season precipitation) in combination and at varying
levels were chosen for our analysis. Experiment-station small-
plot and on-farm large-plot data sets were accumulated from
wheat regions of California; Minnesota; Montana; Alberta,
Canada; and western Australia (Table 1).

We have used data sets in which wheat and wild oat densities
were measured in quadrats at the seedling stage before herbicide
application (if herbicide was applied). All density measure-
ments were converted to the units of plants per square meter for
uniformity across data sets. Yield was measured by a plot
combine or by a farmer-owned combine with yield-mapping
capabilities. Unlike the other four variables, which were
typically an administered treatment within the respective
experiment, growing-season precipitation (GSP) as a metric
for available water, has also been included in all data
sets because of the ease with which this information can be
acquired from local weather stations. Inference from this
metric was limited, however, because only one value
could be obtained per year. GSP for U.S. and Canadian data
sets were calculated by summing monthly totals of current-year
precipitation from April through August. GSP for data
collected in Australia was calculated by totaling monthly
precipitation from April through October because of the
increased length of the Australian growing season. We have
used spring rainfall to calculate GSP, not including winter
precipitation, assuming spring rainfall is most influential on
crop yield.

Greenhouse Study. Although the previously described field
data sets represent the combined efforts of a wide range of
researchers over the past several decades, more data collection
was necessary to increase certainty about the underlying
ecological mechanisms of plant competition because none of
these experiments covered the full range of factors and levels
of our interest, such as more than one level of growing-season
precipitation per year. Thus, the greenhouse study was
undertaken, albeit with the understanding of the limitations
of greenhouse studies because they do not completely mimic
the environmental and plant dynamics in a field setting. The
greenhouse experiment, nonetheless, had four major advan-
tages over a field study. First, a full factorial five-variable
experiment was possible. Second, extraneous factors were
more easily controlled (e.g., soil type was held constant).
Third, there was no confounding history of management (i.e.,
residual from previous years’ applied fertilizer and herbicide
and stored soil water). Finally, greenhouse experiments can
allow for relatively quick replication compared with field
experiments. The soil used in all replications consisted of two
parts silt loam and one part washed concrete sand. To
determine water treatments, a soil–water retention relation-
ship was determined by drying soil samples over 2 wk to
estimate hydraulic conductivity. Resulting measurements of
gravimetric soil–water contents were fit to the Van Genuchten
(1980) parametric equation to determine soil matrix
potentials (Wraith et al. 1995). High, medium, and low
soil–water content treatments were set up with estimated mass
water content of the soil at 27.5, 19.7, and 17.0%,
corresponding to soil matrix potentials of 20.1, 24, and
212 MPa respectively. A 17.8-cm-diam ‘‘standard azalea’’
pot size was used. Each pot was filled with 1,800 g of dry soil,
sown with the corresponding densities of wheat and wild oat,
and watered to field capacity for full germination. After
germination of the wheat and wild oats, the soil in each pot
was allowed to dry to the desired matrix potential. Pots were
weighed every 2 to 3 d and watered to the desired percent
water content. After watering, the soil was allowed to dry until

Table 1. Collected spring-wheat data sets in Canada, United States, and Australia. All data sets (except no. 14) include corresponding growing-season precipitation
values—one per year. X denotes measurements of the specified variable was collected at numerous random levels but did not have fixed treatment levels. All numbers in
the Variables included columns denote the number of fixed treatment levels in each experiment.

Set no. Author Year Location n

Variables included

Crop
density

Wild oat
density

Nitrogen
rate

Herbicide
rate

1 Blackshaw and Molnar 1998 to 2001 Lethbridge, CAN 32 x x 2 1
2 Blackshaw and Molnar 1998 to 2001 Lethbridge, CAN 62 x x 1 3
3 Carlson and Hill 1978 to 1982 Davis, CA, USA 94 17 19
4 Engel et al. 1996 to 1998 Havre, MT, USA 719 1 19 1
5 Jackson 1986, 1993 to 1996 Havre, MT, USA 72 18
6 Lenssen 1998 to 2000 Big Sandy, MT, USA 89 x x xa

7 Lenssen 1998 to 2000 Big Sandy, MT, USA 134 x x xa

8 Lenssen 1998 to 2000 Box Elder, MT, USA 92 x x xa

9 Lenssen 1998 to 2000 Box Elder, MT, USA 95 x x xa

10 Martin and Riordan 1969 Tamworth, AUS 475 x x
11 Martin 1968, 1982 to 1983 Tamworth, AUS 25 x x 1 1
12 Maxwell 1998 to 2001 Bozeman, MT, USA 413 x x
13 Murphy 1997 to 1999 Wagga Wagga, AUS 236 x x
14 O’Donovan et al. 1975 to 1976 Lacombe, CAN 44 1 x 1 1
15 Rew 1997 to 1999 Tamworth, AUS 490 x x 1 1
16 Van Wychen et al. 1999 to 2000 Sun River, MT, USA 305 x x 5 3
17 Van Wychen et al. 1999 to 2000 Sun River, MT, USA 218 x x 5 3
18 Van Wychen et al. 1999 to 2000 Sun River, MT, USA 230 x x 5 3

a Nitrogen treatment in this experiment was measured in terms of nitrate (ppm) in the top 2 feet of soil instead of kg N ha21 applied.
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the next watering. Pots were randomly arranged in the
greenhouse and rotated every week to avoid edge effects and
other area-specific effects of being in a greenhouse, such as
continued placement in a shady or sunny area or near a cooling
fan. When wheat reached the boot stage, approximately 32 to
35 d after sowing, wheat and wild oat plants were clipped at
the soil surface and dried in a 50 C oven for 48 h, then
weighed. Competition between wheat and wild oat plants was
observed only until the boot stage to reduce the restrictive
effects experienced by plants growing in pots. Dried wheat
and wild oat plants from each pot were weighed to obtain
biomass measurements. Plant biomass was assumed to have
a linear relationship to yield (Cousens and Mortimer 1995).

Wheat and wild oat were planted in nine density and spatial
arrangements (Figure 1). The three levels of wheat density
(e.g., 1, 2, and 3 plants pot21) corresponded to field-planting
densities of 170, 340, and 510 plants m22. Three levels of
wild oat density were used to replicate a situation with no
weed pressure, medium infestation, and high weed infestation.
The three levels of wild oat density (e.g., 0, 2, and 4
plants pot21) corresponded to 0, 340, and 650 plants m22.
All noncenter wheat and wild oat plants were sown 2.5 cm
from the center wheat plant using cardboard templates. For
each of the nine combinations of plant densities, each level of
nitrogen, herbicide, and water was applied in combination for
a total of 432 pots replication21. Ten days after planting, four
rates of ammonium nitrate fertilizer were applied at 0, 22.5,
45, and 90 kg N ha21. At the two to four-leaf stage,
imazamethabenz herbicide was applied at 0, 0.53, 0.753,
and 13 the label rate. Biomass of the central wheat plant was
compared across the crop–weed density treatments to
elucidate the influence of competition as well as the influence
of varying combinatorial levels of inputs on crop–weed
competition.

Model Building and Statistical Analysis. Model develop-
ment included the exploration of four historically used

agronomic models and three of our development. The form
of the three models we developed were based on the literature,
specifically, the history of agronomic and competition models,
and on patterns observed by making scatter plots and
standardized regressions of the data. Scatter-plot analysis is
the first fundamental step to model building because it
visually reveals patterns in the data, such as linearity,
nonlinearity, and interactions among independent variables
(Cousens et al. 1987; Neter et al. 1996). Standardized
regression analysis (Brown and Rothery 1993) quantifies the
strength of each independent variable’s influence on the
dependent variable via the size of each variable’s coefficient.
This method of developing model form was based on the
goals of obtaining a model that had properties consistent with
historic models (e.g., Cousens 1985a), would account for
interactions that allow for optimization of inputs, fit the wide
range of data sets well, and would lend itself to future
parameterization with field data sets with high variability.

The seven hypothesized candidate models were fit to the
‘‘combined’’ field data set (i.e., the data set that pooled all1

independent data sets into one) and to the greenhouse data set
to assess the predictability of the best-fitting models (see
Table 2). Although combining data sets has been done
previously by Cousens (1985b), Martin et al. (1987), and
Tollenaar (1992) for investigating model variation, the history
of combining agronomic data from different studies has been
quite recent. Specifically, a more accurate amount of model
variance can be revealed when there is a greater measured
range of predictor and response variables, accounting for
a greater representation of the entire response surface. Yield
was the dependent variable in all seven models.

Model 1, called the rectangular hyperbolic model, included
weed-free yield ( ywf ) and weed density (rw) as predictor
variables, and two fit parameters (see Table 2). The parameter
i estimated proportional yield loss weed21 at low weed
density, and the parameter a estimated the asymptotic
proportional yield loss at high weed density (Cousens
1985b). Model 1 was chosen for this analysis because it was
shown to fit a large number of data sets more consistently
than 17 other functional forms, as investigated by Cousens
(1985b). Consequentially, the rectangular hyperbolic model
gained acceptance for estimating crop yield response to
varying densities of a single weed species (Swanton et al.
1999), as employed by Stoller et al. (1987), Wilson and
Wright (1990), Weaver (1991), Coble and Mortensen (1992),
Norris (1992), Sattin et al. (1992), Berti and Zanin (1994),
and Lindquist et al. (1996).

Model 2, a version of the Beverton-Hold model (1957),
included crop density (rc) and weed density (rw) as predictor
variables, and the fit parameters r, b, and g (Baeumer and
deWit 1968; Jollife et al. 1984; Weiner 1982; Wright 1981)
(see Table 2). This form of the Beverton and Holt (1957)
model, which includes interspecific competition, is a modifi-
cation of the Hassel model for limited population growth in
discrete time (Brown and Rothery 1993). In this case, r
describes the crop’s intrinsic growth rate, b was an
intraspecific competition coefficient, and f was an interspe-
cific competition coefficient. Specifically, as b and f increase

Figure 1. The nine spatial combinations of wheat and wild oat seeding are
illustrated. Os represent wheat plants, and Xs represent wild oat plants. Darkened
circles represent the central wheat plants that were analyzed for neighborhood
intraspecific as well as interspecific competition.

1 Not every data set shown in Table 1 was included in the combined data set
because at least one of the variable measurements was missing. All other
independent data sets that included all five variables, even if a variable had only
one rate, such as a broadcast nitrogen, herbicide, or crop seeding rate, were
included in the combined data set.
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due to intra- and interspecific competition, yield will decrease.
Model 2 has had significant scientific input because it was the
first to include competitive effects of both weed and crop
density (Baeumer and deWit 1968; Jollife et al. 1984; Weiner
1982; Wright 1981).

Developed by Kim et al. (2002), model 3 included
herbicide dose rate (H ), the herbicide dose required to reduce
the weed population by 50% (H50), the response rate of the
herbicide (B), initial weed density (rw0), weed-free yield ( ywf ),
and weed competitiveness at zero herbicide dose (bH0). Model
3 was included in this analysis because it was one of very few
models in the literature that included an input (in this case,
herbicide) as a predictor variable. To aid parameter conver-
gence, H50 had an assumed value of 0.50.

Model 4, called the double hyperbolic model, included crop
density (rc), weed density (rw), asymptotic maximum yield
( ymax), and the fit parameters Q, i, and a ( Jasieniuk et al.
2000). Specifically, Q estimated the initial rate of yield increase
as crop density increases from zero, i estimated the initial rate of
yield loss as weed density increases from zero, and a is the
asymptote for maximum percentage yield loss as weed density
increases to its maximum. The first hyperbola described the
nonlinear increase of yield as crop density increases. Yield
increases to a maximum, which was defined by ymax. The
second hyperbola, based on the Cousens (1985b) rectangular
hyperbolic model, described the nonlinear increase of yield loss
as weed density increases to a maximum of a.

Model 5, an amended version of model 4, included the
inputs of nitrogen, herbicide, and water. Model 5 was divided
into model 5a and model 5b because they were essentially the
same models, but the influence of herbicide rate and nitrogen
rate on wild oats was incorporated into the two models slightly
differently. Model 5a included growing-season precipitation
(W ), nitrogen rate (N ), and their corresponding fit parameters.
The size of the parameter values indicated the magnitude of
influence water (b1), nitrogen rate (b2), and their interaction
(b12) had on the maximum yield in the field. The parameter
amin was between 0 and 1 and described the minimum
herbicide rate response, amax described the maximum herbicide
dose response between 0 and 1, and B affected the slope of the
curve. The component of model 5 that included these two
parameters and herbicide rate was based on the herbicide dose–
response equation of Streibig et al. (1993):

a ~ amin z
amax { amin

1 z eB H { H50ð Þ ½1�

where H50 was the herbicide rate (i.e., H50) required to
obtain a result half way between the upper limit, amax, and
the lower limit, amin, on the herbicide dose rate response
curve. On a log dose scale, the slope is maximal at the point
H 5 H50. Model 5b included the same variables as model 5a
but did not include the sigmoidal herbicide dose rate
equation (Equation 1). Realizing that the herbicide dose–
response equation made model 5a quite complex, and thus
difficult to fit, given the data sets in hand, model 5b included
a simpler regression for the weed impact asymptote,
including water and herbicide effects on wild oat (i.e.,
a ~ b00 z b11

ffiffiffiffiffiffi
W
p

z b3

ffiffiffiffiffi
H
p

z b13

ffiffiffiffiffiffiffiffiffiffi
WH
p

).
Based on the double-hyperbolic model 4, models 5a and 5b

were modified to include nitrogen rate and available water

through the parameters b0, b1, b2, and b12 (see Table 2). The
size and sign (i.e., positive or negative) of each parameter
indicated the influence of the corresponding variable on yield.
The inclusion of these variables was made by regressing ymax

(i.e., weed-free yield) on water level and nitrogen level. This
ymax regression equation assumed water and nitrogen
contributed to the maximum yield value in a field where
there is little to no competition from weeds. Water (i.e.,
growing-season precipitation) and nitrogen were written asffiffiffiffiffiffi

W
p

and
ffiffiffiffiffi
N
p

because the square-root transformation of these
variables provided the best fit. However, logarithm, natural
logarithm, quadratic, and cubic transformations were explored
as well. Given the difficulty of convergence of models 5a and
5b when fit to the combined field data, both models were
reduced in form as discussed further in the Results section.

Because models 5a and 5b were relatively difficult to
interpret, that is the multiplication of the two hyperbolas of
the models were analytically complex, model 6 was developed
(see Table 2). Model 6 made the same assumptions as the two
previous double-hyperbolic models. Model 6, however, was
an alternative functional form with more tractable mathe-
matical properties. Additionally, model 6 was developed for
possible increased potential for parameter convergence. Model
6 included the intrinsic growth rate of the crop (Q). All other
variables and parameters are previously defined. Instead of
splitting the effects of crop density and weed density on yield
into two hyperbolas, model 6 added the effect of crop density,
as influenced by water (b1), nitrogen (b2), and herbicide (b3),
and their interactions (b12 and b13), to the effect of weed
density, as influenced by water (b19), nitrogen (b29), and
herbicide (b39), and their interactions (b129 and b139).

Model 7 was included in the analysis to contrast the fit of
a simple multiple linear-regression model with the other
nonlinear models (see Table 2). Model 7 assumed that all
main effects and their interactions were additive. If model 7 fit
the data as well or nearly as well as the other complex
nonlinear models, evidence for nonlinear ecological patterns
and interactions would be lacking in support. All five main
effects were included in model 7. The hypothesized nonlinear
effects of wheat density, wild oat density, and nitrogen rate on
wheat yield were included via their squared terms. All
interactions between the five variables were explored, as
indicated in Table 2, but not all were statistically significant as
explained further in the Results section.

Exploring the normality of residuals of the models was
accomplished by investigating residual vs. fit, response vs. fit,
and residual Normal Q–Q plots in S-PLUS.2 Residuals of the
models fit to the combined data set were shown to be normal
after the square-root transformation of the dependent variable
(i.e., yield) was used in the model. Because the residuals were
normally distributed for all models after this transformation
was made, the least-squares (LS) method, as opposed to
Fisher’s maximum-likelihood (ML) method, was used to find
the best-fitting parameter estimates. S-PLUS was used to
calculate the least squares. The square-root transformation has
been used previously for wheat yield modeling (O’Donovan et
al. 1985, 2005). Although these two methods do not yield
identical squared standard error (ŝ2) values for linear and
nonlinear models because ML and LS estimators differ by
a factor of n/(n 2 p + 1), the difference is slight given our
large sample size of 1,627 points (Burnham and Anderson
1998). Mean-squared errors (ŝ), R2 values, Akaike In-
formation Criteria (AIC), and Bayesian Information Criteria
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(BIC) model-selection statistics were used for comparing these
nonnested models (Burnham and Anderson 1998), such that
the lowest AIC and BIC values denoted the best-fitting
models. BIC was used in addition to AIC because it penalizes
overfitting (e.g., using more model parameters) more severely.
Given the large number of observations, however, conclusions
made from AIC and BIC statistics were in agreement.

Results

Model Selection Based on Field Data. Because of the lack of
convergence in models 5a and 5b to the combined field data,
models 5a and 5b were reduced to the same form:

ffiffi
y
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~
qrc

1 z qrc= b0 z b1Wð Þ

� �
1 {

irw

1 z irw=a

� �
½2�

As with models 5a and 5b, the model-selection statistics
indicated that the data did not warrant inclusion of certain

parameters in model 6 as hypothesized (see Table 3). The
best-fitting version of model 6 to converge with parameter
estimates was
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According to backward step-wise regression, where terms
significant at P , 0.10 remained in the equation, model 7 was
reduced, including the 12 parameters listed in Table 4.

The lowest DAIC value (Table 4) showed that the best-
fitting model was the multiple linear-regression model, closely
followed by a reduced version of models 5a and 5b (model 5),
as revealed by its lowest residual standard error. The ranges of
DAIC values were quite large partly because of the large
sample size. To visually examine goodness-of-fit for each
model, response (observed yield) values vs. fit (predicted yield)

Table 3. Summary of model-selection statistics (n 5 1,627) for model fits to the combined field data. An asterisk (*) next to estimates indicate parameters whose values
were set at the indicated number to allow nonlinear least-squares convergence. The DAIC of the best-fitting model is 0. Each model’s DAIC value was calculated by taking
the difference between its AIC value and the AIC value of the best-fitting model.a

Model

Parameter Values

DAIC R 2 MSE ŝFit parameters Estimates P value

1 i 0.02 , 0.0001 1,459 0.210 14.9
ywf 56.2 , 0.0001
a 0.50 , 0.0001

2 r 26.6 0.2402 1,458 0.208 14.9
b 0.47 0.2475
f 0.27 0.2474

3 bH0 0.001 0.0021 2,156 0.0 18.5
B 2.7 , 0.0001
ywf 40*

4 ywf 58.6 , 0.0001 1,508 0.096 15.1
Q 7.1 , 0.0001
i 0.01 , 0.0001
a 1*

5 i 0.003 , 0.0001 238 0.628 10.2
Q 0.002 , 0.0001
a 0.45 , 0.0001
b0 133.3 , 0.0001
b1 1.38 , 0.0001

6 i 0.174 , 0.0001 472 0.564 11.1
Q 1.73 , 0.0001
b0 25.0 , 0.0001
b1 5.75 , 0.0001
b2 1.36 , 0.0001
b00 2.44 , 0.0001
b1 20.15 , 0.0001
b3 2.72 0.0002

7 b0(incpt) 10.42 , 0.0001 0 0.705 9.0
b1(water) 20.12 0.0021
b2(wo) 20.10 , 0.0001
b3(wheat) 0.32 , 0.0001
b4(nitro) 20.08 0.0121
b5(herb) 225.4 , 0.0001
b7(wo2) 0.0001 , 0.0001
b8(wheat2) 20.0003 , 0.0001
b9(nitro2) 0.0003 , 0.0001
b11(water : nitro) 0.0039 , 0.001
b12(water : herb) 0.55 , 0.001

a Abbreviations: DAIC, Akaike Information Criteria; MSE, mean squared error; i, proportional yield loss per weed at low density; ywf, weed-free yield; a, asymptotic
proportional yield loss at high weed density; r , the crop’s intrinsic growth rate; b, an intraspecific competition coefficient; f, an interspecific competition coefficient; bH0, weed
competitiveness at zero herbicide dose; B, response rate of the herbicide; Q, estimated the initial rate of yield increase as crop density increases from zero; and crop density, as
influenced by b0, intercept in first hyperbola; b1, water; b2, nitrogen; b00, intercept in second hyperbola; b3, herbicide; b0(incpt), intercept in first hyperbola; b1(water),
water; b2(wo), wild oat; b3(wheat), wheat; b4(nitro), nitrogen; b5(herb), herbicide; b7(wo2), wild oat; b8(wheat2), wheat; b9(nitro2), nitrogen; b11(water : nitro), the
interaction of water and nitrogen; and b12(water : herb), the interaction of water and herbicide. The squared terms refer to coefficients of non-linear variables.
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values were plotted (Figure 2). Models 5, 6, and 7 provided
far better wheat-yield predictability than the other four
models (Figure 2).

A high level of model complexity was supported by fitting
the models to the combined data set even though the scatter-
plot analysis of individual data sets and the combined data set
revealed a great deal of variability and asymptotic yield as inputs

were increased. Specifically, all five predictor variables in
models 6 and 7 were shown to be significantly (P , 0.10)
influential on yield. Despite the assumption in model 7 that all
main effects, squared main effects, and interactions were
additive, this model was able to capture interactions previously
found in the literature—specifically between nitrogen and
water (Campbell et al. 1993; Engel et al. 2001; Henry et al.

Table 4. Summary of model-selection statistics (n 5 1,244) for each model’s fit to the greenhouse data where wheat biomass (approximately 35 d after emergence) was
the dependent variable. An asterisk (*) indicates a parameter whose estimate was set at the indicated value to allow convergence.a

Model

Parameter Values

DAIC R 2 MSE (ŝ2)Fit parameters Estimates P values

1 i 0.0007 0.0009 1,161 0.117 0.256
a 0.48 0.0032
ywf 0.94 , 0.0001

2 r 0.013 , 0.0001 871 0.306 0.227
b 0.011 , 0.0001
f 0.002 , 0.0001

3 bH0 0.0005 , 0.0001 1,513 0.0 0.295
ywf 0.65 , 0.0001
B 0.9*

4 i 0.006 , 0.0001 876 0.305 0.228
Q 0.010 , 0.0001
a 0.52 0.0035
ywf 1.35 , 0.0001

5a i 0.001 0.0153 14 0.651 0.161
Q 0.009 , 0.0001
b0 20.37 , 0.0001
b1 0.06 , 0.0001
b2 0.015 0.0041
b12 20.0000 0.0014
a 0.68 0.0020

5b i 0.001 0.0106 15 0.652 0.161
Q 0.009 , 0.0001
b0 20.24 0.5834
b1 0.05 , 0.0001
b2 0.0008 0.8555
b12 20.0002 0.0035
b00 0.96 0.0007
b19 20.013 0.0231
b39 20.053 0.1835
b139 0.0004 0.0150

6 i 0.005 , 0.0001 0 0.656 0.160
Q 1.07 , 0.0001
b0 229.3 , 0.0001
b1 3.26 , 0.0001
b2 0.096 0.5419
b3 22.67 0.0754
b00 12.2 0.0191
b19 20.182 0.0322
b29 0.147 0.1021
b39 24.02 0.1034

7 b0 0.056 0.2365 57 0.651 0.168
b1(water) 0.0005 , 0.0001
b2(wo) 0.0005 , 0.0001
b3(wheat) 0.002 , 0.0001
b4(nitro) 0.002 0.0005
b5(herb) 20.100 0.0241
b6(wheat2) 0.0000 , 0.0001
b7(wo2) 0.0000 0.0001
b9(nitro2) 0.0000 0.0033
b11(nitro : water) 0.0002 0.0003
b12(water : herb) 20.001 0.0053
b14(wo : water) 0.0000 0.0100

a Abbreviations: DAIC, Akaike Information Criteria; MSE, mean squared error (i.e., residual standard error); i, proportional yield loss per weed at low density; a,
asymptotic proportional yield loss at high weed density; ywf , weed-free yield; r, the crop’s intrinsic growth rate; b, an intraspecific competition coefficient; f, an
interspecific competition coefficient; BH0, weed competitiveness at zero herbicide dose; B, response rate of the herbicide; Q, estimated the initial rate of yield increase as
crop density increases from zero; and crop density, as influenced by b0, intercept in first hyperbola; b1, water; b2, nitrogen; b12, and their interactions; b00, intercept in
second hyperbola; the effect of weed density, as influenced by b19, water; b29, nitrogen; b39, herbicide; b139, and their interactions; b1(water), water; b2(wo), wild oat;
b3(wheat) wheat; b4(nitro), nitrogen; b5(herb), herbicide; b6(wht2), wheat2, wheat; b7(wo2), wild oat; b9(nitro2), nitrogen; b11(nitro : water), the interaction of nitrogen
and water; b12(water : herb), the interaction of water and herbicide, and b14(wo : water), the interaction between water and wild oat. The squared terms refer to
coefficients associated with non-linear variables.

Wagner et al.: Wheat yield model N 659



1986) and between herbicide and water (Grundy et al. 1996).
Model 7, albeit a linear model, also supported the asymptotic
behavior of wheat density and wild oat density on yield.
However, despite the good fit produced by model 7,
coefficients for GSP and nitrogen rate were negative, implying,
counterintuitively, that these treatments had negative influences
on wheat yield. Model 7 has the disadvantage that it does not
draw upon decades of agronomic research that have established
first principle nonlinear responses of wheat yield to the five
variables studied here (Bell and Nalewaja 1968; Bowden and
Friesen 1967; Martin et al. 1987; O’Donovan et al. 1985,
2005; Wilson and Peters 1982).

In contrast, model 5, the second-best-fitting model, did
include underlying nonlinear yield responses with parameters
that are of the correct sign, such as an estimate of the initial
rate of yield increase as crop density increases from zero, an
estimate of the initial rate of yield loss as weed density
increases from zero, and the asymptote for maximum
proportional yield loss as weed density increases. Additionally,
model 5 supported a greater level of complexity than
previously developed nonlinear plant competition models by
including GSP as a predictor variable. Inference from GSP is
limited, however, because only one GSP value was obtained
per year, so that it was impossible to separate this variable
from generalized year and location effects.

Model 6, although not producing as low an AIC value as
model 5 nor as high an R2 value, converged with the inclusion
of nitrogen and herbicide rate as well as GSP. The predicted
vs. observed yield plots show goodness-of-fit to the combined
data as compared with previously developed agronomic
models (Figure 2). Although the modeling results showed
advancement in the area of yield prediction, the sizable
variance in the data, as revealed by the large deviation among
points in the scatter-plot analysis and the low R2 values in the
standardized-regression analysis, is cause for further inquiry.

Our collection of worldwide data sets represents the
combined efforts of an entire discipline over the past several
decades and forms the basis for the best-fitting three and five-
variable models presented in this article. Inferences were
limited because none of the data sets measured all five
predictor variables at more than one level. Thus, assumptions
were necessary and sources of variation were overlooked. For
example, soil type was not included in the models. Rather, soil
type was essentially treated as uniform across the fields (i.e.,
not contributing to wheat yield) where experiments were
conducted. There are many soil quality factors that could
cause variation in wheat yield response to wild oats, e.g.,
nitrogen, herbicide, and water. Additionally, relative time of
emergence, which was not included in the vast majority of
data sets, was assumed the same for wheat and wild oat for our
model development purpose. Although the fit of Models 5
and 6, in particular, is a remarkable step in yield-prediction
modeling, we conducted the greenhouse experiment to further
investigate the variability in wheat–wild oat systems, thus
allowing further five-variable model development.

Model Selection Based on Greenhouse Data. Model 5a did
not reach convergence when herbicide was added to the
model via the herbicide dose–response equation. Therefore,
amin z amax { aminð Þ=1zeB H { H50ð Þ� �

was reduced to a for
convergence, and the total number of estimable parameters
became seven (Table 4). Models 5a, 5b, and 6 (Table 4)
included the transformations for water, nitrogen, and
herbicide (e.g.,
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) found to provide the
best-fit and biological reality. The nitrogen–water and
herbicide–water interaction terms in models 5a, 5b, and 6
were not square-root transformed because it produced a worse
fit. Because of difficulties in convergence of parameter
estimates when all terms were included in these models as
hypothesized in Table 2, they were reduced in form. Models
5a, 5b, 6, and 7 were reduced to the following forms,
respectively:
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Figure 2. Scatter plots showing goodness-of-fit for each model to the combined
field data.
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Parameter estimates for models 5a, 5b, 6, and 7
(Equations 4 to 7) are given in Table 4.

As revealed by its lowest DAIC and mean squared error
(ŝ2) values and highest R2 value, the best-fitting model was
model 6 (Table 4). Model 6 included available water and
nitrogen effects on wheat biomass, and water and herbicide
effects on wild oat biomass. Models 5a, 5b, and 7 provided
reasonable fits according to their DAIC, mean squared error
(MSE), and R2 values. Models 5a and 5b had the second-
lowest DAIC and MSE values. Models 5 to 7 fit the data
similarly well and were strikingly better fits of the data than
models 1 to 4 (Figure 3). Additionally, fits of models 5 to 7 to
the data showed less variance than the fits of models 1 to 4
(Figure 3). Specifically, the two best-fitting models, models
5b and 6,

N Estimated the initial rate of yield increase as crop density
increased from 0 (by the parameter Q)

N Estimated the initial rate of yield loss as weed density
increased from 0 (by the parameter i)

N Implied asymptotic behavior of yield vs. wheat density and
yield vs. wild oat density

N Showed that water level, nitrogen rate, and herbicide rate
significantly affect wheat yield (model 5b only showed water
level and nitrogen rate to significantly affect wheat yield)

N Showed interactions between nitrogen rate and water level
and herbicide rate and water level (model 5b only), and

N Indicated that nitrogen rate, herbicide rate, and water level
have nonlinear effects on wheat yield.

According to supplemental biomass measurements taken of
wheat and wild oat plants across treatments, wheat appears to
outcompete wild oat for water. Parameter estimates derived
from the fit of model 6 to the greenhouse experiment seem to
parallel this finding, although Martin and Field (1998)
indicated that wild oat was the better root competitor. Also
based on biomass measurements, nitrogen had a positive effect
on wheat and wild oat but had a slightly larger positive effect
on the wild oat plants, indicating that wild oat outcompetes
wheat for nitrogen across water and herbicide treatments.
Revealed by the sign of its parameter estimates (e.g., b35
22.67 and b39 5 24.02, Table 4), herbicide had a negative
effect on both wild oat and wheat plants across all nitrogen
and water levels, but its negative effect on wild oat was nearly
two times as great in magnitude. Although the literature
supports the interactions between nitrogen and water (Camp-
bell et al. 1993; Engel et al. 2001; Henry et al. 1971) and
herbicide and water (Grundy et al. 1996), they were not
supported by the fit of model 6 to the greenhouse data

because these interactions were not statistically significant in
the model at the P , 0.10 level. The fit of model 5b to the
greenhouse data did support the inclusion of these interac-
tions.

Although the independently combined field data did not
show nitrogen’s influence on wild oat density to be significant,
fitting models 5 to 7 to the greenhouse data revealed that
nitrogen could have significant positive influence on wild oat
density. Thus, the greenhouse data results supported past
literature results and revealed additional inference over the
combined field data; this substantiated the value in further
greenhouse experimentation where all five variables can be
measured in factorial combination. Given that none of the
field data sets included all five variables measured at three or
more levels, inference was limited.

When fitting the two components of model 6 (e.g.,
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) to the greenhouse data, there was

evidence of improved fit (e.g., improved R 2, MSE, and AIC
values) using square-root transformations of the variables
water, nitrogen, and herbicide (i.e., W, N, and H, re-
spectively). The square-root transformation implied non-
linearity of the effects these three predictor variables have on
yield. Model 5a implied that the nonlinear effects of herbicide

Figure 3. Scatter plots showing goodness-of-fit for each model to the greenhouse
data set.
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on wild oat density via the herbicide dose curve (Streibig et al.
1993) were not shown to be significant. Given that only four
herbicide rates were included in our experiment, however, the
sigmoidal dose–response curve would be difficult to fit. For
such a curve to be fit, at least six rates would be required.

To determine possible improvement of net return using
site-specific recommendations as output by the best-fitting
model, we propose that model 6, the best-fitting nonlinear
model of the candidate set of models, be used for optimization
of localized nitrogen and herbicide rates. Although model 7
provides a very good fit of the data, model 6 was favored over
model 7 because it incorporated forms and known trends
revealed in historical agronomic models. Optimization of
inputs throughout a field is possible using early season wheat
and wild oat seedling densities and localized soil moisture
values as input values to explore how well the output of model
and parameter estimates represents localized, variable-rate
management strategies. Such a demonstration would reveal
the direction for further research in this area, specifically
involving the execution of studies on farm and agricultural
experiment stations.

In summary, the main contribution of this work was to
identify a first-principle model that included the agronomic
variables that can be controlled with management (crop
seeding rate, nitrogen rate, herbicide rate) and a set of
variables that naturally cause variation (weed density, water
level) in crop yield. The goodness-of-fits revealed sizeable
potential for the advancement of localized, variable-rate input
management using precision agriculture technologies via
a decision support system including first-principle models
like 5 to 7. We propose that model 6, the best-fitting model of
the candidate set of models, be used for optimization of
localized nitrogen and herbicide rates on farms using
parameter estimates obtained from the greenhouse study
and the independently collected field data. Model 6 may be
more accurately predictive on farms if it included parameter
estimates completely derived by field data; however, the field
data did not allow for the convergence of model 6. Therefore,
to use model 6 in a field application, a starting point is to use
the combination of best-fit greenhouse and field parameter
estimates. After the initial growing season, model 6 could be
updated with all site-specific field parameter estimates.
Subsequent growing seasons would allow for continual
improvement of parameter estimates and model form, as well
as model validation. Such a demonstration would reveal the
value in using a nonlinear, five-variable yield model and the
development of site-specific management strategies.

Sources of Materials

2 S-PLUS. 2002. S-PLUS, Insightful Corporation, Seattle, WA.
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